An Efficient Bi-objective Genetic Algorithm for the Single Batch-Processing Machine Scheduling Problem with Sequence Dependent Family Setup Time and Non-identical Job Sizes
Authors
Abstract:
This paper considers the problem of minimizing make-span and maximum tardiness simultaneously for scheduling jobs under non-identical job sizes, dynamic job arrivals, incompatible job families,and sequence-dependentfamily setup time on the single batch- processor, where split size of jobs is allowed between batches. At first, a new Mixed Integer Linear Programming (MILP) model is proposed for this problem; then, it is solved by -constraint method.Since this problem is NP-hard, a bi-objective genetic algorithm (BOGA) is offered for real-sized problems. The efficiency of the proposed BOGA is evaluated to be comparedwith many test problemsby -constraint method based on performance measures. The results show that the proposed BOGAis found to be more efficient and faster than the -constraint method in generating Pareto fronts in most cases.
similar resources
A bi-objective model for the assembly flow shop scheduling problem with sequence dependent setup times and considering energy consumption
full text
Single-machine scheduling considering carryover sequence-dependent setup time, and earliness and tardiness penalties of production
Production scheduling is one of the very important problems that industry and production are confronted with it. Production scheduling is often planned in the industrial environments while productivity in production can improve significantly the expansion of simultaneous optimization of the scheduling plan. Production scheduling and production are two areas that have attracted much attention in...
full textEarliness-tardiness minimization on scheduling a batch processing machine with non-identical job sizes
This paper considers a scheduling problem for minimizing the sum of the absolute deviations of completion times from the due dates of all jobs (earliness-tardiness) on a single batch processing machine. For this problem, each job has a corresponding processing time and size and all jobs have the common due date. The problem under study is NP-hard and hence a hybrid genetic algorithm based on a ...
full textA hybrid genetic algorithm for the single machine scheduling problem with sequence-dependent setup times
Several researches on scheduling problems have been done under the assumption that setup times are independent of job sequence. However, in certain contexts, such as the pharmaceutical industry, metallurgical production, electronics and automotive manufacturing, there are frequently setup times on equipment between two different activities. In a survey of industrial schedulers, Dudek et al. (19...
full textGENETIC AND TABU SEARCH ALGORITHMS FOR THE SINGLE MACHINE SCHEDULING PROBLEM WITH SEQUENCE-DEPENDENT SET-UP TIMES AND DETERIORATING JOBS
This paper introduces the effects of job deterioration and sequence dependent set- up time in a single machine scheduling problem. The considered optimization criterion is the minimization of the makespan (Cmax). For this purpose, after formulating the mathematical model, genetic and tabu search algorithms were developed for the problem. Since population diversity is a very important issue in ...
full textA New ILP Model for Identical Parallel-Machine Scheduling with Family Setup Times Minimizing the Total Weighted Flow Time by a Genetic Algorithm
This paper presents a novel, integer-linear programming (ILP) model for an identical parallel-machine scheduling problem with family setup times that minimizes the total weighted flow time (TWFT). Some researchers have addressed parallel-machine scheduling problems in the literature over the last three decades. However, the existing studies have been limited to the research of independent jobs,...
full textMy Resources
Journal title
volume 11 issue 2
pages 63- 76
publication date 2018-07-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023